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Genetic programming is one of the most general evolutionary computation methods. It is an automated method for creating 
a working computer program from a problem’s high-level statement. Genetic programming does this by genetically breeding 
a population of computer programs using the principles of Darwin’s natural selection and biologically inspired operations. In 
our research, material was formed by drawing using different process parameters and then determining the tensile 
strengths (dependent variable) of the specimens.  On the basis of experimental data, various different prediction models for 
the tensile stress were developed by the genetic programming method. To make a comparison, the models for tensile 
stress were also developed by the standard regression method. The accuracies of the best genetic programme models 
were proved by a testing data set and comparison between the genetic and regression models.   
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1.  Introduction 
 

Many modelling methods for predicting dependent 

output variables have been developed to reduce the costs 

of the experiments and computer computations. 

Traditional methods often employed to solve real complex 

problems tend to inhibit elaborate explorations of the 

search space. They can be expensive and often result in 

sub-optimal solutions. Because of the pre-specified size 

and shape of the model, the latter is often incapable of 

capturing complex relationships between influencing 

parameters. Evolutionary Computation (EC) is generating 

considerable interest for solving real engineering 

problems. It is proving robust in delivering global optimal 

solutions and helping to resolve those limitations 

encountered in traditional methods. EC harnesses the 

power of natural selection to turn computers into 

optimization tools. This is very applicable to different 

problems in the manufacturing industry [1]. One of most 

important EC methods is genetic programming (GP) 

which is an evolutionary computation method for imitating 

the biological evolution of living organisms.  

Different researches for modelling a tensile strength 

and other mechanical characteristics have  been carried out 

using a neural network or genetic algorithms for modelling 

[2-8], thus forming process parameters but only a few 

dealing with much more general genetic programming 

method [10-13,15]. The recent use of genetic algorithms in 

various domains connected to materials science, solid state 

physics and chemistry, crystallography and engineering is 

reviewed in [2]. All these methods can be efficiently used 

also for obtaining other characteristics [6, 8], especially in 

simple system modelling. In some researches integration 

of artificial neural network with genetic algorithm in order 

to accelerate the search of optima models were applied [3, 

5]. When compared to some other released papers on this 

subject, where mostly genetic algorithms [2-5], neural 

networks [4, 5-8] and regression analysis [9] are used to 

obtain suitable models, in this paper we describe a new 

approach for modelling of mechanical characteristics of 

formed material - an evolutionary computation method. 

The GP method is often used for complex system 

modelling, but it can also be effectively used for the 

modelling of a relatively simple system, such as the 

systems described in our paper.  Experimental data 

obtained during the cold drawing processes under different 

conditions serves as an environment to which, during 

simulated evolution, models for the tensile strength have 

to be adapted. Different values for effective strains and 

coefficients of friction were used as independent input 

variables (parameters), while tensile strength was a 

dependent output variable. The prediction accuracy of 

different models was proved with the testing data set.  

 

 

2. Method used 
 

Two reliable methods of modelling are used in this 

paper: genetic programming and regression analysis, 

which are widely known and used.  Genetic programming 

is probably the most general approach from among 

evolutionary computation methods in which the structures 

subject to adaptation are those hierarchically organized 

computer programs whose size and form dynamically 

change during simulated evolution. The space for solutions 

in the GP method is the huge space of all possible 

computer programs consisting of components describing 

the problem area studied. The aim of GP is to find out the 

computer programme that best solves the problem. 

Possible solutions in GP are all those possible computer 
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programmes that can be composed in a recursive manner 

from a set of function genes F and a set of terminal genes 

T. Function genes F are arithmetical functions, Boolean 

functions, relation functions, etc., while terminal genes are 

numerical constants, logical constants, variables, etc. [1]. 

The initial population is obtained by the creation of 

random computer programmes consisting of available 

function genes from set F and available terminal genes 

from set T. Each program represents a random point in the 

searching space. The creation of an initial population is a 

blind random search for solutions within the huge space of 

possible solutions. The next step is the calculation of an 

individual’s adaptation to the environment (i.e., 

calculation of fitness for each computer programme). 

Fitness is a guideline for modifying those structures 

undergoing adaptation. Computer programs change in GP, 

in particular during genetic operations regarding 

reproduction and crossover. The reproduction operation 

gives a higher probability of selection to more successful 

organisms. They are copied unchanged into the next 

generation. The crossover operation ensures the exchange 

of genetic material between computer programmes. The 

mutation operation increases the genetic diversity of a 

population. After finishing the first cycle, which includes 

creation of the initial population, calculation of fitness for 

each individual of the population, and genetic modification 

of the contents of the computer programmes and formation 

of a new population, an iterative repetition of fitness 

calculation and genetic modification follows. After a 

certain number of generations the computer programs are 

usually much better adapted to the environment. The 

definition of the environment depends on the problem 

dealt with. The evolution is terminated when the 

termination criterion is fulfilled. This can be a prescribed 

number of generations or sufficient quality of the solution. 

In order to obtain a successful solution, the problem must 

be processed over several independent runs. The number 

of runs required for the satisfactory solution depends on 

the difficulty of the problem.  

 

 

3. Experimental work 
 

The aim of the experimental work was to determine 

the influence of the effective strain e and coefficient of 

friction  during cold drawing on the change of tensile 

strength of cold drawn copper alloy. Copper alloy rods 

were deformed by cold drawing under different conditions. 

The drawing speed was 20 m/min and the angle of 

drawing die was  = 28. Rods were drawn from an initial 

diameter of D=20 mm to six different diameters (i.e. six 

different effective strains). Three different lubricants with 

different coefficients of friction (=0.07, =0.11 and 

=0.16) were used for the drawing process. In order to 

evaluate the tensile strength, standard specimens for 

tensile tests
 
were prepared from locations in the middles of 

the drawn rods. In this way we obtained 18 different 

experimental specimens. The tensile strengths of all 

specimens were determined by providing three tensile tests 

for each specimen in order to provide reliable results. The 

results (average values) for tensile strength are presented 

in Table 1. Experimental data serve as an environment 

which, during simulated evolution, models for tensile 

strength have to adapt. 

 

 
Table 1. Experimental results. 

 

 

Nr. 

Effective 

 strain 

e 

Coef. of 

friction 

 

Tensile strength 

Rm [N/mm
2
 ] 

initial spec.  / / 481 

1 0.10 0.07 498 

2 0.21 0.07 513 

3 0.32 0.07 524 

4 0.44 0.07 530 

5 0.57 0.07 532 

6 0.71 0.07 535 

7 0.10 0.11 502 

8 0.32 0.11 531 

9 0.71 0.11 540 

10 0.10 0.16 506 

11 0.44 0.16 536 

12 0.71 0.16 544 

13 0.21 0.11 517 

14 0.44 0.11 530 

15 0.57 0.11 530 

16 0.21 0.16 529 

17 0.32 0.16 535 

18 0.57 0.16 547 

 
 
4. Modelling of tensile strength by genetic  
    programming 
 

In the GP method the initial random population P (t) 

consists of randomly generated organisms which are, in 

fact, mathematical models. The variable t represents the 

generation time. Each organism in the initial population 

consists of the available function genes F and terminal 

genes T. Terminal genes are in fact independent variables: 

strain and coefficient of friction. Random floating-point 

numbers within the range [-10, 10] are added to the set of 

terminals to increase the genetic diversities of the 

organisms. Function genes F are basic arithmetical, 

exponential and cosine functions. 

 

4.1 Evolutionary parameters 

 

The absolute deviation R (i, t) of individual model i 

(organism) in generation time t for the GP approach, was 

introduced as the standard raw fitness measurement [1]: 
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where E (j) is the experimental value for measurement j, P 

(i, j) is the predicted value returned by the individual 

model i for measurement j, and n is the maximum number 

of measurements. The aim of the optimisation task is to 

find those models that equation (1) would give as having 

as low an absolute deviation as possible. However, 

because it is unnecessary that the smallest values of the 

above equation also means the smallest percentage 

deviation of this model, the average absolute percentage 

deviation of all measurements for individual model i was 

defined as [1]: 

  %100
|)(|

),(
)( 

njE

tiR
i                    (2) 

 

Equation (2) was not used as the fitness measurement 

for evaluating population, but only to find the best 

organism in population after completing the run. 

In the GP method, reproduction, crossover, and 

mutation operations were used for altering the population 

P (t). Evaluation and altering of the population P (t) were 

repeated until termination condition had been fulfilled. 

The termination condition was the prescribed maximum 

number of generation to be run. Reproduction, crossover, 

and mutation were used as genetic operations. The 

evolutionary processes were controlled by the following 

evolutionary parameters: population size 1,000, maximum 

number of generations to be run 50, probability of 

reproduction 0.15, probability of crossover 0.7, probability 

of mutation 0.15, maximum depth for initial random 

organisms 6, maximum depth of mutation 6, and 

maximum permissible depth of organisms after crossover 

12.  

 

4.2. Realisation of the evolutionary process 

 

The modelling of tensile strength was carried out by 

the special GP system (computer program). Each 

individual GP run started with the training phase by the 

training data set shown in Table 1 (Nr.1 to Nr.12). The 

testing data set (Table 1: Nr.13 to Nr. 18) was not included 

within the training range. Each run lasted up to generation 

30 when it was temporarily interrupted. If an average 

percentage deviation Δ (i) of at least one prediction model 

(organism) in the population was smaller than 5%, the 

evolution of the population continued up to generation 50, 

otherwise it was terminated. After each training phase, the 

accuracy of predicting the best models was tested using 

the testing data set. As much as 400 independent runs were 

executed for modelling the tensile strength. The GP 

models in our research were developed originally as a 

prefix LISP expression, and then converted into an infix 

notation.  

 

 

5. Genetic modelling results  
 

GP modelling was executed by two different genes 

function sets F = (+,-,*, /) and F = (+,-,*, /, ZEXP). The 

best (the most accurate) model obtained with genes 

function set F = (+,-,*, /) is quite complicated and is 

written is LISP as:  

 

(- (+ (% (+ -6.72502 ) (- (+ (- (*  -5.63273) (-  )) (* 

(+ (+ -6.72502 ) ) (*  (- (* -0.168495 ) 4.86573)))) 

(+  (% (% -5.63273 ) (+ -6.72502 ))))) (* (* -

7.44391 (+ 7.15074 )) (+  -9.92379))) (+ (- (% (% -

5.63273 ) (+ -3.00006 )) (* (+ (+ -6.72502 (+ (-  ) 

(+ -5.92924 ))) ) (% (*  -6.44657) (+ (% 1.97763 

) -7.44391)))) (- (% (% -9.3319 ) (* 7.25773 (+ 

7.15074 (% (%  ) (+ (-  ) (+ -5.92924 )))))) (* (% 

7.8429 ) (+ -0.289511 )))))) 

 

The same model can be written as the mathematical 

expression: 
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The model (3) was generated in generation No. 49 and 

has the average percentage deviation of the training data  

(i) = 0,12 %  and that of the testing data  (i) = 0,13%.  

Percentage deviation is in fact the percentage error 

between a single experimental value and the value 

predicted by the genetic model.  
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Fig. 1.  Percentage deviation curve between the best 

models      regarding      individual      generation    and  

                  experimental results (F = +, -, *, /). 

 

 Fig. 1 shows the percentage deviation curve (i) 

between the best model regarding individual generation 

and experimental results when using the set of function 

genes F = {+, -, *, /}. It is obvious that in early 

generations the best models are not as precise as the 

models generated in late generations. The relatively slow 

improvement of the best models in later generations (after 

generation 35) is due to the unification trends of the 

population leading to the shortage of new genetic ideas. 
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Slightly better accuracy ( (i) = 0, 11 %, and that of 

the testing data (i) = 0,13%)  of the GP model was 

obtained when the genes function set which includes the 

exponent function was used: F = (+,-,*, /, ZEXP): 

 

 (+ (% (% (+ (- (* -9.08852 9.68961) (% (ZEXP 

3.27675) 7.46124)) (- (%  ) (%  ))) (* (- (%  ) (* 

(- (%  ) (* 3.27675 )) )) (- (ZEXP 4.38517) (- 

9.68448 -5.12255)))) (- (+ (- (*  1.3429) (ZEXP (% 

(% (+  ) ) -7.12236))) (* (- (- 9.68448 -5.12255) (% 

 )) (*  ))) (* (ZEXP (% (% (+  ) ) -7.12236)) (- 

(%  ) (* 3.27675 ))))) (- (+ (- (+ (ZEXP ) (ZEXP 

6.23761)) (- (%  ) (* 6.11433 (+  6.68026)))) (* (+ 

(- (* -9.08852 9.68961) (- (%  ) (%  ))) (-  (+ -

7.61921 -8.03228))) (ZEXP (* -5.76456 )))) (* (ZEXP 

(* (+ -9.80642 (-  )) (* (% (-  ) (+  )) (- (ZEXP 

4.38517) (-  ))))) (+ (* (ZEXP (% (% (+  ) ) -

7.12236)) (- (%  ) (* 3.27675 ))) (- (- 9.68448 -

5.12255) (* (- (- 9.68448 -5.12255) (-  )) (*  ))))))) 
 

This model can be written as the mathematical 

expression: 
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                             (4) 

 

The most accurate simple model with model has 

average deviation   (i) = 1,24 % (testing data  (i) = 

1,72%) is: 

 

(+ (* (*  8.72112) 8.72112) (ZEXP 6.19403)) 

 

Written as the mathematical expression:     

 

 487.84 + 76.05                                (5) 

 

Fig. 2 shows the number of genes of the best genetic 

model (generated with function genes F = {+, -, *, /}) in 

each generation. In generation 1 created randomly, the best 

model contains large number of genes (83) and then, in the 

second generation, there is large decrease to only 19 genes 

in the best model. From generations 3 the number of genes 

in the best model increases constantly and reaches the 

value of 95 in generation 50. The higher number of genes 

usually means higher complexity of the genetic model. 
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Fig. 2. The number of genes in the best model in each  

generation obtained by function genes F = {+, -, *, /}. 

 
 
6. Regression analysis result  
 

A mathematical model for regression method was 

chosen according to [14]: 
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In the equation (6) y is dependent variable, xi, xij are 

independent variables, while b0, bi, bij are coefficients to 

be determined by using regression analysis. In our case, 

the dependent variable was tensile strength (Rm), while 

effective strain
e

 and coefficient of friction  were 

independent variables. Coefficients b0, bi and bij were 

determined by using the regression analysis computer 

program. By inserting the computed values of coefficients 

into the equation (6.1), the regression model for impact 

toughness can be presented as: 

 

 

Rm = 480,781 + 150,864  + 66,115  - 133,762  

2
 – 238,080 2

 + 162,736                (7) 

 

      Equation (7) represents a mathematical model of 

effective strain’s influence and the coefficient of friction 

on tensile strength for chosen material within the 

experimental area. It has the average percentage deviation 

of the training data set ∆(i) = 0,21 % and that of the testing 

data set ∆(i) = 0,24 %.  

      When regression models are compared to genetic 

programming models, the first important difference is the 

complexities of the genetic models. Due to its evolutionary 

concept, genetic programming models are complex, with 

lots of genes, and the forms of these models can be 

confusing. But the form of a GP model (5) is very simple. 

Of course, when it comes to the accuracies of different 

models, GP models show much greater accuracy then 

regression models.  
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7. Conclusions 
 

The models presented in the paper are a result of the 

self-organization and stochastic processes taking place 

during simulated evolution, and not of human intelligence. 

The accuracies of the models developed during the 

training phase were also confirmed using testing data not 

included within the training range. Only two genetically 

developed models out of many successful solutions are 

presented here.  

The main advantage of presented GP method, when 

compared with other modelling methods, is much better 

accuracy of GP obtained models and wider range of 

suitable models. Because of the high precision regarding 

the models developed by the genetic programming 

approach, with the proposed concept, the excessive 

number of experiments/simulations can be avoided, which 

leads to the reduction of the product development costs. 

The research showed that simple, and in the same time, 

very precise models are often hard to reach. This is due to 

the fact that evolution is a stochastic process, and, 

therefore, rationality in the development of the models is 

rare. However, in many metal-forming processes the 

accuracy of prediction is of vital importance, not the 

model complexity. 
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